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Summary
• Parallelism

• Multiprocessing fundamentals

• Amdahl’s Law

• Why Multicores?

– Alternatives

– Examples
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Flynn’s Taxonomy of Computers

• Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966

• SISD: Single instruction operates on single data element

• SIMD: Single instruction operates on multiple data elements

– Array processor

– Vector processor

• MISD: Multiple instructions operate on single data element

– Closest form: systolic array processor, streaming processor

• MIMD: Multiple instructions operate on multiple data elements 
(multiple instruction streams)

– Multiprocessor

– Multithreaded processor
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Why Parallel Computers?
• Parallelism: Doing multiple things at a time

• Things: instructions, operations, tasks

• Main Goal: Improve performance (Execution time or task 
throughput)

• Execution time of a program governed by Amdahl’s Law

• Other Goals

– Reduce power consumption

• (4N units at freq F/4) consume less power than (N units at 
freq F)

• Why? 

– Improve cost efficiency and scalability, reduce complexity

• Harder to design a single unit that performs as well as N 
simpler units 4



Types of Parallelism & How to Exploit Them

• Instruction Level Parallelism
– Different instructions within a stream can be executed in parallel

– Pipelining, out-of-order execution, speculative execution, VLIW

– Dataflow

• Data Parallelism
– Different pieces of data can be operated on in parallel

– SIMD: Vector processing, array processing

– Systolic arrays, streaming processors

• Task Level Parallelism
– Different “tasks/threads” can be executed in parallel

– Multithreading

– Multiprocessing (multi-core)
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Task-Level Parallelism
• Partition a single problem into multiple related tasks 

(threads)

– Explicitly: Parallel programming

• Easy when tasks are natural in the problem

• Difficult when natural task boundaries are unclear

– Transparently/implicitly: Thread level speculation

• Partition a single thread speculatively

• Run many independent tasks (processes) together

– Easy when there are many processes

• Batch simulations, different users, cloud computing

– Does not improve the performance of a single task

6



Multiprocessing Fundamentals
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Multiprocessor Types

• Loosely coupled multiprocessors

– No shared global memory address space

– Multicomputer network

• Network-based multiprocessors

– Usually programmed via message passing

• Explicit calls (send, receive) for communication
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Multiprocessor Types (2)

• Tightly coupled multiprocessors

– Shared global memory address space

– Traditional multiprocessing: symmetric 
multiprocessing (SMP)

• Existing multi-core processors, multithreaded processors

– Programming model similar to uniprocessors (i.e., 
multitasking uniprocessor) except

• Operations on shared data require synchronization
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Main Issues in Tightly-Coupled MP 

• Shared memory synchronization

– Locks, atomic operations

• Cache consistency

– More commonly called cache coherence

• Ordering of memory operations 

– What should the programmer expect the hardware to provide?

• Resource sharing, contention, partitioning

• Communication: Interconnection networks

• Load imbalance
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Metrics of Multiprocessors

11



Parallel Speedup

Time to execute the program with 1 processor

divided by

Time to execute the program with N processors
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Parallel Speedup Example

• a4x4 + a3x3 + a2x2 + a1x + a0

• Assume each operation 1 cycle, no 
communication cost, each op can be executed in 
a different processor

• How fast is this with a single processor?

– Assume no pipelining or concurrent execution of 
instructions

• How fast is this with 3 processors? 
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Speedup with 3 Processors
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Revisiting the Single-Processor 
Algorithm

17

Horner, “A new method of solving numerical equations of all orders, by continuous 

approximation,” Philosophical Transactions of the Royal Society, 1819.
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Takeaway

• To calculate parallel speedup fairly you need to 
use the best known algorithm for each system 
with N processors

• If not, you can get superlinear speedup
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Superlinear Speedup

• Can speedup be greater than P with P processing 
elements?

• Consider:

– Cache effects

– Memory effects

– Working set

• Happens in two ways:

– Unfair comparisons

– Memory effects
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Caveats of Parallelism (I)
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Amdahl’s Law

23

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 



Amdahl’s Law

– f: Parallelizable fraction of a program

– P: Number of processors

• Maximum speedup limited by serial portion: 

Serial bottleneck
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Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Why the Sequential Bottleneck?
• Parallel machines have the 

sequential bottleneck

• Main cause: Non-
parallelizable operations on 
data (e.g. non-parallelizable 
loops)

for ( i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

• Single thread prepares data 
and spawns parallel tasks
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Another Example of Sequential Bottleneck
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Caveats of Parallelism (II)
• Amdahl’s Law

– f: Parallelizable fraction of a program

– P: Number of processors

• Parallel portion is usually not perfectly parallel

– Synchronization overhead (e.g., updates to shared 
data)

– Load imbalance overhead (imperfect parallelization)

– Resource sharing overhead (contention among N 
processors)
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Bottlenecks in Parallel Portion
• Synchronization: Operations manipulating shared data 

cannot be parallelized
– Locks, mutual exclusion, barrier synchronization

– Communication: Tasks may need values from each other

• Load Imbalance: Parallel tasks may have different lengths
– Due to imperfect parallelization or microarchitectural effects

– Reduces speedup in parallel portion

• Resource Contention: Parallel tasks can share hardware 
resources, delaying each other
– Replicating all resources (e.g., memory) expensive

– Additional latency not present when each task runs alone
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Difficulty in Parallel Programming
• Little difficulty if parallelism is natural

– “Embarrassingly parallel” applications

– Multimedia, physical simulation, graphics

– Large web servers, databases?

• Big difficulty is in 
– Harder to parallelize algorithms

– Getting parallel programs to work correctly

– Optimizing performance in the presence of bottlenecks

• Much of parallel computer architecture is about
– Designing machines that overcome the sequential and parallel bottlenecks 

to achieve higher performance and efficiency

– Making programmer’s job easier in writing correct and high-performance 
parallel programs
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Parallel and Serial Bottlenecks
• How do you alleviate some of the serial and parallel 

bottlenecks in a multi-core processor?

• We will return to this question in future lectures

• Reading list:

– Annavaram et al., “Mitigating Amdahl’s Law Through EPI 
Throttling,” ISCA 2005.

– Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

– Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012. 

– Ipek et al., “Core Fusion: Accommodating Software Diversity 
in Chip Multiprocessors,” ISCA 2007.
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Multicores
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Moore’s Law

35

Moore, “Cramming more components onto integrated circuits,”
Electronics, 1965.
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Multi-Core
• Idea: Put multiple processors on the same die

• Technology scaling (Moore’s Law) enables more 
transistors to be placed on the same die area

• What else could you do with the die area you dedicate 
to multiple processors?

– Have a bigger, more powerful core

– Have larger caches in the memory hierarchy

– Simultaneous multithreading

– Integrate platform components on chip (e.g., network 
interface, memory controllers)

– … 37



Why Multi-Core?

• Alternative: Bigger, more powerful single core

– Larger superscalar issue width, larger instruction window, 
more execution units, large trace caches, large branch 
predictors, etc

+ Improves single-thread performance transparently to 
programmer, compiler
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Why Multi-Core?

• Alternative: Bigger, more powerful single core

- Very difficult to design (Scalable algorithms for improving 
single-thread performance elusive)

- Power hungry – many out-of-order execution structures 
consume significant power/area when scaled. Why? 

- Diminishing returns on performance 

- Does not significantly help memory-bound application 
performance (Scalable algorithms for this elusive)

39



Large Superscalar+OoO vs. MultiCore
• Olukotun et al., “The Case for a Single-Chip 

Multiprocessor,” ASPLOS 1996.
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Multi-Core vs. Large Superscalar+OoO

• Multi-core advantages

+ Simpler cores →more power efficient, lower 
complexity, easier to design and replicate, higher 
frequency (shorter wires, smaller structures)

+ Higher system throughput on multiprogrammed
workloads → reduced context switches

+ Higher system performance in parallel applications 
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Multi-Core vs. Large Superscalar+OoO

• Multi-core disadvantages

- Requires parallel tasks/threads to improve 
performance (parallel programming)

- Resource sharing can reduce single-thread 
performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased 
demand
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Comparison Points…
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Why Multi-Core?

• Alternative: Bigger caches

+ Improves single-thread performance transparently to 
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from 
cache size. Why?

- Multiple levels complicate memory hierarchy 
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Cache vs. Core
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Why Multi-Core?

• Alternative: (Simultaneous) Multithreading

+ Exploits thread-level parallelism (just like multi-core)

+ Good single-thread performance with SMT

+ No need to have an entire core for another thread

+ Parallel performance aided by tight sharing of caches
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Why Multi-Core?

• Alternative: (Simultaneous) Multithreading

- Scalability is limited: need bigger register files, larger 
issue width (and associated costs) to have many 
threads → complex with many threads

- Parallel performance limited by shared fetch 
bandwidth

- Extensive resource sharing at the pipeline and 
memory system reduces both single-thread and 
parallel application performance
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Why Multi-Core?
• Alternative: Integrate platform components on 

chip instead

+ Speeds up many system functions (e.g., network 
interface cards, Ethernet controller, memory 
controller, I/O controller)

- Not all applications benefit (e.g., CPU intensive code 
sections)
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Why Multi-Core?

• Alternative: Traditional symmetric 
multiprocessors

+ Smaller die size (for the same processing core)

+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources → less contention between 
threads
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Why Multi-Core?

• Alternative: Traditional symmetric 
multiprocessors

- Long latencies between cores (need to go off chip) →
shared data accesses limit performance → parallel 
application scalability is limited

- Worse resource efficiency due to less sharing →
worse power/energy efficiency 
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Why Multi-Core?

• Other alternatives?

– Clustering?

– Dataflow? EDGE?

– Vector processors (SIMD)?

– Integrating DRAM on chip?

– Reconfigurable logic? (general purpose?)

51



Review next week

• “Exploiting ILP, TLP, and DLP with the 
polymorphous TRIPS architecture”, K. 
Sankaralingam, ISCA 2003.
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https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en


Summary: Multi-Core Alternatives

• Bigger, more powerful single core

• Bigger caches

• (Simultaneous) multithreading

• Integrate platform components on chip instead

• More scalable superscalar, out-of-order engines

• Traditional symmetric multiprocessors

• And more!
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Multicore Examples
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Multiple Cores on Chip
• Simpler and lower power than a single large core

• Large scale parallelism on chip
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IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



With Multiple Cores on Chip
• What we want:

– N times the performance with N times the cores 
when we parallelize an application on N cores

• What we get:

– Amdahl’s Law (serial bottleneck)

– Bottlenecks in the parallel portion
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The Problem: Serialized Code Sections

• Many parallel programs cannot be parallelized 
completely

• Causes of serialized code sections

– Sequential portions (Amdahl’s “serial part”)

– Critical sections

– Barriers

– Limiter stages in pipelined programs

• Serialized code sections

– Reduce performance

– Limit scalability

– Waste energy

57



Demands in Different Code Sections

• What we want:

• In a serialized code section → one powerful “large” 
core 

• In a parallel code section →many wimpy “small” cores

• These two conflict with each other:

– If you have a single powerful core, you cannot have many 
cores

– A small core is much more energy and area efficient than a 
large core
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“Large” vs. “Small” Cores
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• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch 

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence 

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor 

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)



Meet Small: Sun Niagara (UltraSPARC T1)

60

• Kongetira et al., “Niagara: A 32-Way Multithreaded 
SPARC Processor,” IEEE Micro 2005.



Niagara Core
• 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

• Round robin thread selection (unless cache miss)

• Shared FP unit among cores
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Niagara Design Point
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Meet Small: Sun Niagara II (UltraSPARC T2)
• 8 SPARC cores, 8 

threads/core. 8 stages. 16 KB 

I$ per Core. 8 KB D$ per 

Core. FP, Graphics, Crypto, 

units per Core. 

• 4 MB Shared L2, 8 banks, 16-

way set associative. 

• 4 dual-channel FBDIMM 

memory controllers.

• X8 PCI-Express @ 2.5 Gb/s.

• Two 10G Ethernet ports @ 

3.125 Gb/s.
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Meet Small, but Larger: Sun ROCK 
• Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline 

Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

• Goals:

– Maximize throughput when threads are available

– Boost single-thread performance when threads are not 
available and on cache misses

• Ideas: 

– Runahead on a cache miss → ahead thread executes miss-
independent instructions, behind thread executes dependent 
instructions

– Branch prediction (gshare)
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Sun ROCK
• 16 cores, 2 threads per 

core (fewer threads 
than Niagara 2)

• 4 cores share a 32KB 
instruction cache

• 2 cores share a 32KB 
data cache

• 2MB L2 cache (smaller 
than Niagara 2)
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More Powerful Cores in Sun ROCK
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Meet Large: IBM POWER4
• Tendler et al., “POWER4 system microarchitecture,” IBM J R&D, 

2002.

• Another symmetric multi-core chip…

• But, fewer and more powerful cores
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IBM POWER4
• 2 cores, out-of-order execution

• 100-entry instruction window in each core

• 8-wide instruction fetch, issue, execute

• Large, local+global hybrid branch predictor

• 1.5MB, 8-way L2 cache

• Aggressive stream based prefetching
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IBM POWER5
◼ Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE Micro 2004.
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Large, but Smaller: IBM POWER6
• Le et al., “IBM POWER6 

microarchitecture,” IBM J R&D, 
2007.

• 2 cores, in order, high frequency 
(4.7 GHz)

• 8 wide fetch

• Simultaneous multithreading in 
each core

• Runahead execution in each core

– Similar to Sun ROCK
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Many More…

• Wimpy nodes: Tilera

• Asymmetric multicores

• DVFS
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Computer Architecture Today 
• Today is a very exciting time to study computer 

architecture

• Industry is in a large paradigm shift (to multi-core, 
hardware acceleration and beyond) – many different 
potential system designs possible

• Many difficult problems caused by the shift
– Power/energy constraints →multi-core?, accelerators?

– Complexity of design →multi-core?

– Difficulties in technology scaling → new technologies?

– Memory wall/gap

– Reliability wall/issues

– Programmability wall/problem → single-core?
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Computer Architecture Today (2)
• These problems affect all parts of the computing stack –

if we do not change the way we design systems
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Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic

Circuits

Electrons



Computer Architecture Today (3)

• You can revolutionize the way computers are built, if you 
understand both the hardware and the software

• You can invent new paradigms for computation, 
communication, and storage

• Recommended book: Kuhn, “The Structure of Scientific 
Revolutions” (1962)

– Pre-paradigm science: no clear consensus in the field

– Normal science: dominant theory used to explain things 
(business as usual); exceptions considered anomalies

– Revolutionary science: underlying assumptions re-examined
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… but, first …

• Let’s understand the fundamentals…

• You can change the world only if you understand 
it well enough…

– Especially the past and present dominant paradigms

– And, their advantages and shortcomings -- tradeoffs
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Asymmetric Multi-Core
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Asymmetric Chip Multiprocessor (ACMP)

• Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high 
throughput (12+2 units)

78

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”


