
CSC 2224: Parallel Computer
Architecture and Programming
Parallel Processing, Multicores

Prof. Gennady Pekhimenko

University of Toronto

Fall 2018

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Summary
• Parallelism

• Multiprocessing fundamentals

• Amdahl’s Law

• Why Multicores?

– Alternatives

– Examples

2

Flynn’s Taxonomy of Computers

• Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

• SISD: Single instruction operates on single data element

• SIMD: Single instruction operates on multiple data elements

– Array processor

– Vector processor

• MISD: Multiple instructions operate on single data element

– Closest form: systolic array processor, streaming processor

• MIMD: Multiple instructions operate on multiple data elements
(multiple instruction streams)

– Multiprocessor

– Multithreaded processor

3

Why Parallel Computers?
• Parallelism: Doing multiple things at a time

• Things: instructions, operations, tasks

• Main Goal: Improve performance (Execution time or task
throughput)

• Execution time of a program governed by Amdahl’s Law

• Other Goals

– Reduce power consumption

• (4N units at freq F/4) consume less power than (N units at
freq F)

• Why?

– Improve cost efficiency and scalability, reduce complexity

• Harder to design a single unit that performs as well as N
simpler units 4

Types of Parallelism & How to Exploit Them

• Instruction Level Parallelism
– Different instructions within a stream can be executed in parallel

– Pipelining, out-of-order execution, speculative execution, VLIW

– Dataflow

• Data Parallelism
– Different pieces of data can be operated on in parallel

– SIMD: Vector processing, array processing

– Systolic arrays, streaming processors

• Task Level Parallelism
– Different “tasks/threads” can be executed in parallel

– Multithreading

– Multiprocessing (multi-core)

5

Task-Level Parallelism
• Partition a single problem into multiple related tasks

(threads)

– Explicitly: Parallel programming

• Easy when tasks are natural in the problem

• Difficult when natural task boundaries are unclear

– Transparently/implicitly: Thread level speculation

• Partition a single thread speculatively

• Run many independent tasks (processes) together

– Easy when there are many processes

• Batch simulations, different users, cloud computing

– Does not improve the performance of a single task

6

Multiprocessing Fundamentals

7

Multiprocessor Types

• Loosely coupled multiprocessors

– No shared global memory address space

– Multicomputer network

• Network-based multiprocessors

– Usually programmed via message passing

• Explicit calls (send, receive) for communication

8

Multiprocessor Types (2)

• Tightly coupled multiprocessors

– Shared global memory address space

– Traditional multiprocessing: symmetric
multiprocessing (SMP)

• Existing multi-core processors, multithreaded processors

– Programming model similar to uniprocessors (i.e.,
multitasking uniprocessor) except

• Operations on shared data require synchronization

9

Main Issues in Tightly-Coupled MP

• Shared memory synchronization

– Locks, atomic operations

• Cache consistency

– More commonly called cache coherence

• Ordering of memory operations

– What should the programmer expect the hardware to provide?

• Resource sharing, contention, partitioning

• Communication: Interconnection networks

• Load imbalance

10

Metrics of Multiprocessors

11

Parallel Speedup

Time to execute the program with 1 processor

divided by

Time to execute the program with N processors

12

Parallel Speedup Example

• a4x4 + a3x3 + a2x2 + a1x + a0

• Assume each operation 1 cycle, no
communication cost, each op can be executed in
a different processor

• How fast is this with a single processor?

– Assume no pipelining or concurrent execution of
instructions

• How fast is this with 3 processors?

13

14

15

Speedup with 3 Processors

16

Revisiting the Single-Processor
Algorithm

17

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

18

Takeaway

• To calculate parallel speedup fairly you need to
use the best known algorithm for each system
with N processors

• If not, you can get superlinear speedup

19

Superlinear Speedup

• Can speedup be greater than P with P processing
elements?

• Consider:

– Cache effects

– Memory effects

– Working set

• Happens in two ways:

– Unfair comparisons

– Memory effects

20

Caveats of Parallelism (I)

22

Amdahl’s Law

23

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law

– f: Parallelizable fraction of a program

– P: Number of processors

• Maximum speedup limited by serial portion:

Serial bottleneck

24

Speedup =
1

+1 - f
f

P

Amdahl’s Law Implication 1

25

Amdahl’s Law Implication 2

26

Why the Sequential Bottleneck?
• Parallel machines have the

sequential bottleneck

• Main cause: Non-
parallelizable operations on
data (e.g. non-parallelizable
loops)

for (i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

• Single thread prepares data
and spawns parallel tasks

27

Another Example of Sequential Bottleneck

28

Caveats of Parallelism (II)
• Amdahl’s Law

– f: Parallelizable fraction of a program

– P: Number of processors

• Parallel portion is usually not perfectly parallel

– Synchronization overhead (e.g., updates to shared
data)

– Load imbalance overhead (imperfect parallelization)

– Resource sharing overhead (contention among N
processors)

30

Speedup =
1

+1 - f
f

P

Bottlenecks in Parallel Portion
• Synchronization: Operations manipulating shared data

cannot be parallelized
– Locks, mutual exclusion, barrier synchronization

– Communication: Tasks may need values from each other

• Load Imbalance: Parallel tasks may have different lengths
– Due to imperfect parallelization or microarchitectural effects

– Reduces speedup in parallel portion

• Resource Contention: Parallel tasks can share hardware
resources, delaying each other
– Replicating all resources (e.g., memory) expensive

– Additional latency not present when each task runs alone

31

Difficulty in Parallel Programming
• Little difficulty if parallelism is natural

– “Embarrassingly parallel” applications

– Multimedia, physical simulation, graphics

– Large web servers, databases?

• Big difficulty is in
– Harder to parallelize algorithms

– Getting parallel programs to work correctly

– Optimizing performance in the presence of bottlenecks

• Much of parallel computer architecture is about
– Designing machines that overcome the sequential and parallel bottlenecks

to achieve higher performance and efficiency

– Making programmer’s job easier in writing correct and high-performance
parallel programs

32

Parallel and Serial Bottlenecks
• How do you alleviate some of the serial and parallel

bottlenecks in a multi-core processor?

• We will return to this question in future lectures

• Reading list:

– Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

– Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

– Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

– Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

33

Multicores

34

Moore’s Law

35

Moore, “Cramming more components onto integrated circuits,”
Electronics, 1965.

36

Multi-Core
• Idea: Put multiple processors on the same die

• Technology scaling (Moore’s Law) enables more
transistors to be placed on the same die area

• What else could you do with the die area you dedicate
to multiple processors?

– Have a bigger, more powerful core

– Have larger caches in the memory hierarchy

– Simultaneous multithreading

– Integrate platform components on chip (e.g., network
interface, memory controllers)

– … 37

Why Multi-Core?

• Alternative: Bigger, more powerful single core

– Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

38

Why Multi-Core?

• Alternative: Bigger, more powerful single core

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry – many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

39

Large Superscalar+OoO vs. MultiCore
• Olukotun et al., “The Case for a Single-Chip

Multiprocessor,” ASPLOS 1996.

40

Multi-Core vs. Large Superscalar+OoO

• Multi-core advantages

+ Simpler cores →more power efficient, lower
complexity, easier to design and replicate, higher
frequency (shorter wires, smaller structures)

+ Higher system throughput on multiprogrammed
workloads → reduced context switches

+ Higher system performance in parallel applications

41

Multi-Core vs. Large Superscalar+OoO

• Multi-core disadvantages

- Requires parallel tasks/threads to improve
performance (parallel programming)

- Resource sharing can reduce single-thread
performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased
demand

42

Comparison Points…

43

Why Multi-Core?

• Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from
cache size. Why?

- Multiple levels complicate memory hierarchy

44

Cache vs. Core

45

N
u

m
b

e
r

o
f

T
ra

n
s

is
to

rs

Time

Cache

Microprocessor

Why Multi-Core?

• Alternative: (Simultaneous) Multithreading

+ Exploits thread-level parallelism (just like multi-core)

+ Good single-thread performance with SMT

+ No need to have an entire core for another thread

+ Parallel performance aided by tight sharing of caches

46

Why Multi-Core?

• Alternative: (Simultaneous) Multithreading

- Scalability is limited: need bigger register files, larger
issue width (and associated costs) to have many
threads → complex with many threads

- Parallel performance limited by shared fetch
bandwidth

- Extensive resource sharing at the pipeline and
memory system reduces both single-thread and
parallel application performance

47

Why Multi-Core?
• Alternative: Integrate platform components on

chip instead

+ Speeds up many system functions (e.g., network
interface cards, Ethernet controller, memory
controller, I/O controller)

- Not all applications benefit (e.g., CPU intensive code
sections)

48

Why Multi-Core?

• Alternative: Traditional symmetric
multiprocessors

+ Smaller die size (for the same processing core)

+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources → less contention between
threads

49

Why Multi-Core?

• Alternative: Traditional symmetric
multiprocessors

- Long latencies between cores (need to go off chip) →
shared data accesses limit performance → parallel
application scalability is limited

- Worse resource efficiency due to less sharing →
worse power/energy efficiency

50

Why Multi-Core?

• Other alternatives?

– Clustering?

– Dataflow? EDGE?

– Vector processors (SIMD)?

– Integrating DRAM on chip?

– Reconfigurable logic? (general purpose?)

51

Review next week

• “Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture”, K.
Sankaralingam, ISCA 2003.

52

https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en

Summary: Multi-Core Alternatives

• Bigger, more powerful single core

• Bigger caches

• (Simultaneous) multithreading

• Integrate platform components on chip instead

• More scalable superscalar, out-of-order engines

• Traditional symmetric multiprocessors

• And more!

53

Multicore Examples

54

Multiple Cores on Chip
• Simpler and lower power than a single large core

• Large scale parallelism on chip

55

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

With Multiple Cores on Chip
• What we want:

– N times the performance with N times the cores
when we parallelize an application on N cores

• What we get:

– Amdahl’s Law (serial bottleneck)

– Bottlenecks in the parallel portion

56

The Problem: Serialized Code Sections

• Many parallel programs cannot be parallelized
completely

• Causes of serialized code sections

– Sequential portions (Amdahl’s “serial part”)

– Critical sections

– Barriers

– Limiter stages in pipelined programs

• Serialized code sections

– Reduce performance

– Limit scalability

– Waste energy

57

Demands in Different Code Sections

• What we want:

• In a serialized code section → one powerful “large”
core

• In a parallel code section →many wimpy “small” cores

• These two conflict with each other:

– If you have a single powerful core, you cannot have many
cores

– A small core is much more energy and area efficient than a
large core

58

“Large” vs. “Small” Cores

59

• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Meet Small: Sun Niagara (UltraSPARC T1)

60

• Kongetira et al., “Niagara: A 32-Way Multithreaded
SPARC Processor,” IEEE Micro 2005.

Niagara Core
• 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

• Round robin thread selection (unless cache miss)

• Shared FP unit among cores

61

Niagara Design Point

62

Meet Small: Sun Niagara II (UltraSPARC T2)
• 8 SPARC cores, 8

threads/core. 8 stages. 16 KB

I$ per Core. 8 KB D$ per

Core. FP, Graphics, Crypto,

units per Core.

• 4 MB Shared L2, 8 banks, 16-

way set associative.

• 4 dual-channel FBDIMM

memory controllers.

• X8 PCI-Express @ 2.5 Gb/s.

• Two 10G Ethernet ports @

3.125 Gb/s.
63

Meet Small, but Larger: Sun ROCK
• Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline

Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

• Goals:

– Maximize throughput when threads are available

– Boost single-thread performance when threads are not
available and on cache misses

• Ideas:

– Runahead on a cache miss → ahead thread executes miss-
independent instructions, behind thread executes dependent
instructions

– Branch prediction (gshare)

64

Sun ROCK
• 16 cores, 2 threads per

core (fewer threads
than Niagara 2)

• 4 cores share a 32KB
instruction cache

• 2 cores share a 32KB
data cache

• 2MB L2 cache (smaller
than Niagara 2)

65

More Powerful Cores in Sun ROCK

66

Meet Large: IBM POWER4
• Tendler et al., “POWER4 system microarchitecture,” IBM J R&D,

2002.

• Another symmetric multi-core chip…

• But, fewer and more powerful cores

67

IBM POWER4
• 2 cores, out-of-order execution

• 100-entry instruction window in each core

• 8-wide instruction fetch, issue, execute

• Large, local+global hybrid branch predictor

• 1.5MB, 8-way L2 cache

• Aggressive stream based prefetching

68

IBM POWER5
◼ Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE Micro 2004.

69

Large, but Smaller: IBM POWER6
• Le et al., “IBM POWER6

microarchitecture,” IBM J R&D,
2007.

• 2 cores, in order, high frequency
(4.7 GHz)

• 8 wide fetch

• Simultaneous multithreading in
each core

• Runahead execution in each core

– Similar to Sun ROCK

70

Many More…

• Wimpy nodes: Tilera

• Asymmetric multicores

• DVFS

71

Computer Architecture Today
• Today is a very exciting time to study computer

architecture

• Industry is in a large paradigm shift (to multi-core,
hardware acceleration and beyond) – many different
potential system designs possible

• Many difficult problems caused by the shift
– Power/energy constraints →multi-core?, accelerators?

– Complexity of design →multi-core?

– Difficulties in technology scaling → new technologies?

– Memory wall/gap

– Reliability wall/issues

– Programmability wall/problem → single-core?

72

Computer Architecture Today (2)
• These problems affect all parts of the computing stack –

if we do not change the way we design systems

73

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic

Circuits

Electrons

Computer Architecture Today (3)

• You can revolutionize the way computers are built, if you
understand both the hardware and the software

• You can invent new paradigms for computation,
communication, and storage

• Recommended book: Kuhn, “The Structure of Scientific
Revolutions” (1962)

– Pre-paradigm science: no clear consensus in the field

– Normal science: dominant theory used to explain things
(business as usual); exceptions considered anomalies

– Revolutionary science: underlying assumptions re-examined

74

… but, first …

• Let’s understand the fundamentals…

• You can change the world only if you understand
it well enough…

– Especially the past and present dominant paradigms

– And, their advantages and shortcomings -- tradeoffs

75

CSC 2224: Parallel Computer
Architecture and Programming
Parallel Processing, Multicores

Prof. Gennady Pekhimenko

University of Toronto

Fall 2018

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Asymmetric Multi-Core

77

Asymmetric Chip Multiprocessor (ACMP)

• Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

78

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

